

EU TYPE-EXAMINATION CERTIFICATE

According to Annex IV, Part A of 2014/33/EU Directive

Certificate No.:

EU-BD 845

Certification Body of the Notified Body:

TÜV SÜD Industrie Service GmbH

Westendstr. 199

80686 Munich - Germany Identification No. 0036

Certificate Holder:

Chr. Mayr GmbH & Co. KG

Eichenstr. 1

87665 Mauerstetten - Germany

Manufacturer of the Test Sample:

Chr. Mayr GmbH & Co. KG

Eichenstr. 1

(Manufacturer of Serial Production – see Enclosure)

87665 Mauerstetten - Germany

Product:

Braking device acting on the shaft of the traction sheave, as part of the protection device against overspeed for the car moving in upwards direction and braking element against unintended

car movement

Type:

RTW Size 150, 200, 250, 350

Type 8012.___.__

Directive:

2014/33/EU

Reference Standards:

EN 81-20:2014

EN 81-50:2014

EN 81-1:1998+A3:2009

Test Report:

EU-BD 845 of 2015-09-30

Outcome:

The safety component conforms to the essential health and safety requirements of the mentioned

Directive as long as the requirements of the

annex of this certificate are kept.

Date of Issue:

2015-09-30

Date of Validity:

from 2016-04-20

Achim Janocha

Certification Body "lifts and cranes"

Annex to the EC Type-Examination Certificate No. EU-BD 845 of 2015-09-30

1 Scope of application

- 1.1 Use as braking device part of the the protection device against overspeed for the car moving in upwards direction permissible brake torques and tripping rotary speeds
- 1.1.1 Permissible brake torques and maximum tripping rotary speeds of the traction sheave when the brake device acts on the shaft of the traction sheave while the car is moving upward

Size	Permissible brake torque [Nm]	Max. tripping rotary speed of the traction sheave [rpm]		
150	180 - 360	981		
200	240 - 500	979		
250	370 - 640	800		
350	500 - 920	800		

1.1.2 Maximum tripping speed of the overspeed governor and maximum rated speed of the lift

The maximum tripping speed of the overspeed governor and the maximum rated speed of the lift must be calculated on the basis of the traction sheave's maximum tripping rotary speed as outlined above taking into account traction sheave diameter and car suspension.

$$V = \frac{DTS \times \pi \times n}{60 \times i}$$

Tripping (rated) speed (m/s)

D_{TS} = Diameter of the traction sheave from rope's center to rope's center (m)

 $\pi = 3,14$

n = Rotary speed (rpm)

i = Ratio of the car suspension

- 1.2 Use as braking element part of the protection device against unintended car movement (acting in up and down direction) permissible brake torques, tripping rotary speeds and characteristics
- 1.2.1 Nominal brake torques and response times with relation to a brand-new brake element

Size	Min. nominal brake torque* [Nm]	Max. nominal brake torque * [Nm]	Max. tripping rotary speed [rpm]	Maximum response times** [ms] without overexcitation		
				t _o	t ₅₀	t ₉₀
150	2 x 90 = 180		981	40	70	95
150		2 x 180 = 360	981	20	40	70
200	2 x 120 = 240		979	85	145	190
200		2 x 250 = 500	979	30	60	110
250	2 x 185 = 370		800	50	75	110
250		2 x 320 = 640	800	25	45	85
350	2 x 250 = 500		800	60	100	125
350		2 x 460 = 920	800	30	50	85

Interim values can be interpolated

Explanations:

Nominal brake torque: Brake torque assured for installation operation by the safety component manufac-

turer.

** Response times: t_X time difference between the drop of the braking power until establishing X% of

the nominal brake torque, t_{50} optionally calculated t_{50} = $(t_{10} + t_{90})/2$ or value taken from

the examination recording

Annex to the EC Type-Examination Certificate No. EU-BD 845 of 2015-09-30

1.2.2 Assigned execution features

Type of powering / deactivation continuous current / continuous current end
Brake control parallel
Nominal air gap 0.45 mm
Damping elements YES
Overexcitation NO

2 Conditions

- 2.1 Above mentioned safety component represents only a part at the protection device against overspeed for the car moving in upwards direction and unintended car movement. Only in combination with a detecting and triggering component in accordance with the standard (two separate components also possible), which must be subjected to an own type-examination, can the system created fulfil the requirements for a protection device.
- 2.2 The installer of a lift must create an examination instruction to fulfil the overall concept, add it to the lift documentation and provide any necessary tools or measuring devices, which allow a safe examination (e. g. with closed shaft doors).
- 2.3 The manufacturer of the drive unit must provide calculation evidence that the connection traction sheave shaft brake disc and the shaft itself is sufficiently safe, if the brake disc is not a direct component of the traction sheave (e. g. casted on). The shaft itself has to be statically supported in two points.

The calculation evidence must be enclosed with the technical documentation of the lift.

- The setting of the brake torque has to be secured against unauthorized adjustment (e. g. sealing lacquer).
- 2.5 The identification drawing no. E02812200000161 including stamp dated 2015-09-30 shall be included to the EU type-examination for the identification and information of the general construction and operation and distinctness of the approved type.
- 2.6 The EU type-examination certificate may only be used in combination with the corresponding annex and enclosure (List of authorized manufacturer of the serial production). The enclosure will be updated immediately after any change by the certification holder.

3 Remarks

- 3.1 In the scope of this type-examination it was found out, that the brake device also functions as a brake for normal operation, is designed as a redundant system and therefore meets the requirements to be used also as a part of the protection device against overspeed for the car moving in upwards direction and as braking element as part of the protection device against unintended car movement.
- 3.2 Checking whether the requirements as per section 5.9.2.2 of EN 81-20:2014 (D) have been complied with is not part of this type examination.
- 3.3 Other requirements of the standard, such as reduction of brake moment respectively brake force due to wear or operational caused changes of traction are not part of this type examination.
- 3.4 This EU type-examination certificate was issued according to the following standards:
 - EN 81-1:1998 + A3:2009 (D), Annex F.7 and F.8
 - EN 81-20:2014 (D), part 5.6.6.11, 5.6.7.13
 - EN 81-50:2014 (D), part 5.7 and 5.8
- 3.5 A revision of this EU type-examination certificate is inevitable in case of changes or additions of the above mentioned standards or of changes of state of the art.

Enclosure to the EU Type-Examination Certificate No. EU-BD 845 of 2015-09-30

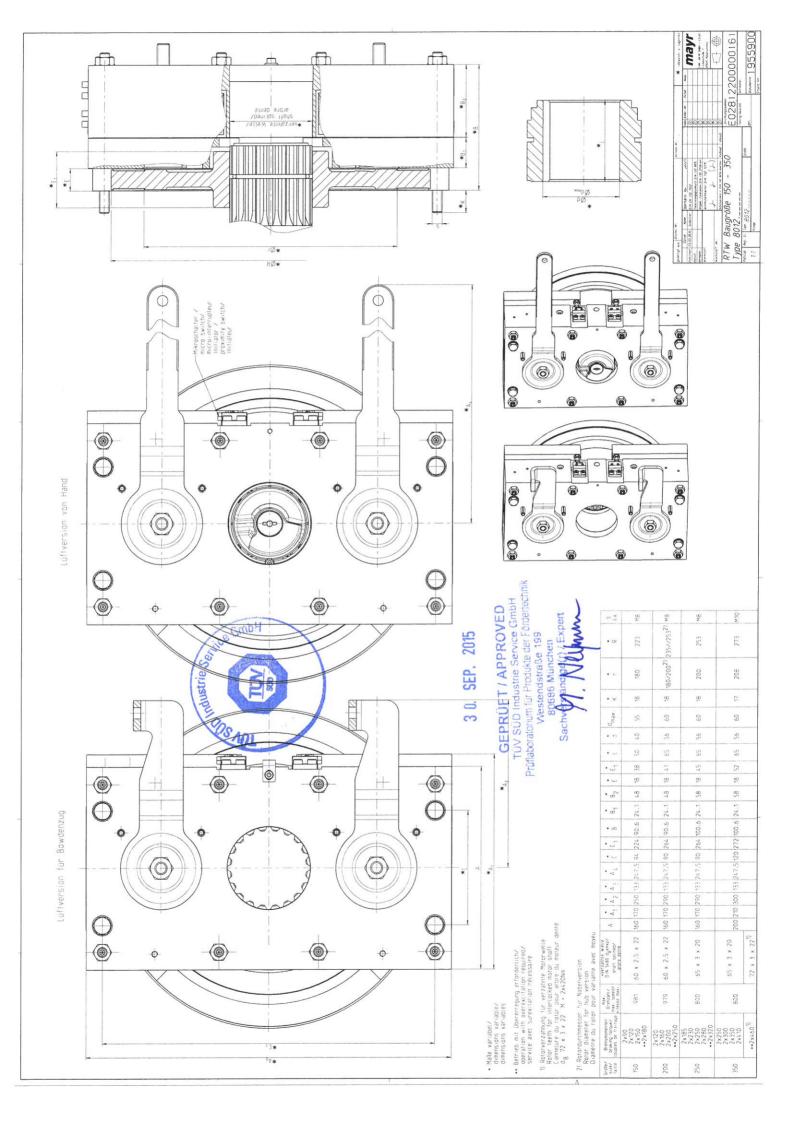
Authorised Manufacturer of Serial Production - Production Sites (valid from: 2016-01-13):

Company

Chr. Mayr GmbH & Co. KG

Address

Eichenstr. 1


87665 Mauerstetten - Germany

Company Address Mayr Power Transmission Co. Ltd. 7 Fuxin Road, Jiangsu Province 215637 Zhangjiagang - P.R. China

Company Address Mayr Polska Sp. z. o. o. Rojów, ul. Hetmanska 1 63-500 Ostrzesów - Poland

- END OF DOCUMENT -

Based on: Application form from Co. Chr. Mayr GmbH & Co. KG of 2016-01-13

